Cambridge International AS \& A Level

CANDIDATE NAME

\square CANDIDATE NUMBER \square

CHEMISTRY

Paper 3 Advanced Practical Skills 2

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40
- The number of marks for each question or part question is shown in brackets []
- The Periodic Table is printed in the question paper
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 12 pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.
Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 A bottle containing the acid salt sodium hydrogen sulfate, NaHSO_{4}, has been contaminated. You will determine the percentage purity by mass of the sodium hydrogen sulfate by titrating a solution of the acid salt against a known concentration of sodium hydroxide.

$$
\mathrm{NaHSO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The impurity in the sodium hydrogen sulfate does not react with aqueous sodium hydroxide under the conditions of the titration.

FB 1 is $0.100 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .
FB 2 is $12.53 \mathrm{~g} \mathrm{dm}^{-3}$ impure sodium hydrogen sulfate.
FB 3 is thymol blue indicator.

(a) Method

- Fill a burette with FB 1.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FB 2 into a conical flask.
- Add approximately 10 drops of FB 3.
- Perform a rough titration and record your burette readings in the space below. The end-point is shown by the appearance of a permanent blue colour.

The rough titre is \qquad cm^{3}.

- Carry out as many titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all your burette readings and the volume of FB 1 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtain the mean value.
$25.0 \mathrm{~cm}^{3}$ of FB 2 required cm^{3} of FB 1. [1]
(c) Calculations
(i) Give all your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures.
(ii) Use your answer to (b) to calculate the amount, in mol, of sodium hydroxide, FB 1, titrated.
amount of $\mathrm{NaOH}=$ mol

Hence, deduce the amount, in mol, of sodium hydrogen sulfate present in $25.0 \mathrm{~cm}^{3}$ of FB 2.
amount of $\mathrm{NaHSO}_{4}=$ \qquad mol
(iii) Use your final answer to (c)(ii) to calculate the mass of sodium hydrogen sulfate present in $1.00 \mathrm{dm}^{3}$ of FB 2.
mass of $\mathrm{NaHSO}_{4}=$
(iv) Use your answer to (c)(iii) and the information on page 2 to calculate the percentage purity by mass of the sodium hydrogen sulfate.

2 In Question 1 you carried out a neutralisation reaction involving sodium hydroxide.

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

In Question 2 you are to determine the enthalpy of neutralisation, $\Delta H_{\text {neut, }}$, as shown by the equation above. You will use a solution of sodium hydroxide and the diprotic acid, sulfuric acid.

FB 4 is approximately $2 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .
FB 5 is $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(a) Method

- Place the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the $25.0 \mathrm{~cm}^{3}$ measuring cylinder to transfer $25.0 \mathrm{~cm}^{3}$ of FB 4 into the cup.
- Place the thermometer in the solution. Record the temperature.
- Fill the clean burette with FB 5.
- Run $5.00 \mathrm{~cm}^{3}$ of FB 5 into the same cup.
- Stir the mixture and record the highest temperature observed.
- Repeat adding $5.00 \mathrm{~cm}^{3}$ volumes of FB 5 into the same cup until $45.00 \mathrm{~cm}^{3}$ has been added. Record the highest temperature after each addition.

Results

Table 2.1

volume of FB 5/cm ${ }^{3}$	0.00	5.00	10.00	15.00	20.00
temperature $/{ }^{\circ} \mathrm{C}$					

volume of FB 5/cm	25.00	30.00	35.00	40.00	45.00
temperature $/{ }^{\circ} \mathrm{C}$					

(b) (i) Plot a graph of temperature (y-axis) against volume of acid added (x-axis) on the grid provided. Select a scale on the y-axis to include a temperature $2.0^{\circ} \mathrm{C}$ above the highest temperature you recorded.

Label any points you consider to be anomalous. Draw two lines of best fit, one for the rise in temperature and one for the temperature change after the maximum temperature has been reached.
Extrapolate the two lines so they intersect.
(ii) Use your graph to:

- determine the volume of sulfuric acid, FB 5, required to neutralise $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide, FB 4
- determine the maximum change in temperature, ΔT.

$$
\begin{aligned}
& \text { volume of } \mathrm{H}_{2} \mathrm{SO}_{4}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots \mathrm{cm}^{3} \\
& \qquad \text { maximum } \Delta T=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots{ }^{\circ} \mathrm{C}
\end{aligned}
$$

(c) (i) Use your answer to (b)(ii) to calculate the amount, in mol, of sulfuric acid, FB 5, neutralised in your reaction.

$$
\text { amount of } \mathrm{H}_{2} \mathrm{SO}_{4}=
$$

\qquad mol [1]
(ii) Calculate the heat energy evolved in the neutralisation reaction in (a). (Assume that 4.18 J are required to change the temperature $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.)

> heat energy evolved = .
\qquad
(iii) Use your answers to (c)(i) and (c)(ii) to calculate the enthalpy of neutralisation, $\Delta H_{\text {neut }}$, for the reaction given in (a).

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
\begin{align*}
& \Delta H_{\text {neut }}=\underset{\text { sign }}{\text { _..... }} \tag{1}\\
& \text { sign value unit }
\end{align*}
$$

(d) (i) The value for $\Delta H_{\text {neut }}^{\ominus}$ quoted in a textbook is $-57.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Calculate the percentage error in your answer to (c)(iii) compared with the theoretical value.
(If you were unable to answer (c)(iii) then assume the value was $-49.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$.)
percentage error $=$ \% [1]
(ii) Without changing the apparatus, suggest one improvement that could be made to the method in (a).
Explain your answer.
improvement \qquad
\qquad
explanation \qquad
\qquad
(e) (i) Use your graph and the information on page 4 to calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of sodium hydroxide in FB 4.
concentration of $\mathrm{NaOH}=$ \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
(ii) A student repeats Question 1 with a new solution of FB 1.

The student decides to dilute FB 4 by a factor of 20 to make the new FB 1 solution.
The student incorrectly assumes the concentration of the new FB 1 solution is $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$.

Calculate the actual concentration of NaOH in the new FB 1 solution.
(If you were unable to answer (e)(i) then assume the concentration of sodium hydroxide in FB 4 was $1.93 \mathrm{~mol} \mathrm{dm}^{-3}$. This is not the correct value.)
concentration of NaOH in the new FB 1 solution $=$ \qquad moldm^{-3}

Predict the effect that using the new FB 1 solution has on the value for the percentage purity of the sodium hydrogen sulfate you calculated in 1(c)(iv).

The percentage purity of NaHSO_{4} would be larger than calculated.	
The percentage purity of NaHSO_{4} would be the same as calculated.	
The percentage purity of NaHSO_{4} would be smaller than calculated.	

Tick the appropriate box and explain your answer.
\qquad
\qquad
\qquad

Qualitative analysis

For each test you should record all your observations in the spaces provided.
Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.
Where no change is observed you should write 'no change'.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests should be attempted.

3 (a) FB 6 is the solid impurity found in the bottle of solid used to prepare FB 2. It is a compound of a Group 1 metal and does not contain sulfur. The anion in FB 6 is listed in the Qualitative analysis notes.

Select a reagent, or reagents, and carry out one test on FB 6 to collect more information about the anion present.
reagent or reagents \qquad apparatus and conditions \qquad
\qquad
observations \qquad
\qquad
From your observations give the formula of the anion present.
If you are unable to identify the anion positively from your test and observations, then write 'unknown'.
formula of anion
(b) (i) FB 7 and FB 8 are solutions containing a total of three cations. All of the cations are listed in the Qualitative analysis notes.

Carry out the following tests and record your observations. Use a fresh 1 cm depth of solution in a test-tube for each test.

Table 3.1

test	observations	
	FB 7	FB 8
Test 1 Add a few drops of acidified aqueous potassium manganate(VII).		
Test 2 Add aqueous ammonia.		
Test 3 Add aqueous sodium hydroxide, then		
decant the mixture into a boiling tube and warm gently.		

(ii) Using your observations in (b)(i), identify the cations present in FB 7 and FB 8. Write the formula of each cation identified. If the tests do not allow you to positively identify the cations, write 'unknown'.
cation or cations in FB 7
cation or cations in FB 8
(iii) Construct the ionic equation for one reaction observed on addition of aqueous ammonia in Test 2. Include state symbols.
\qquad
(iv) Deduce the type of reaction which occurs when acidified aqueous potassium manganate(VII) is added to FB 7 in Test 1 in (b)(i).
[Total: 12]

Qualitative analysis notes

1 Reactions of cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on warming	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is observed unless $\left[\mathrm{Ba}^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. unless $\left[\mathrm{Ca}{ }^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), $\mathrm{Cu}^{2+}(\mathrm{aq})$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}{ }^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream/off-white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives pale yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; decolourises acidified aqueous KMnO_{4}
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids); gives white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO_{4}
thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$	gives off-white/pale yellow ppt. slowly with H^{+}

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I_{2}	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday constant	$F=9.65 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
electronic charge	$e=-1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\mathrm{m}}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at s.t.p. $(101 \mathrm{kPa}$ and 273 K$)$ $V_{\mathrm{m}}=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room conditions
ionic product of water	$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\right.$ at $\left.298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)\right)$
specific heat capacity of water	$c=4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\left(4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}\right)$

The Periodic Table of Elements

	$\stackrel{\infty}{\sim}$					岕 \times ¢	® 두니ํ	
	$\stackrel{\rightharpoonup}{*}$		のレ			®ット		
	\bullet		$\infty \bigcirc ⿳ 亠 丷 厂 彡$					
	$\stackrel{6}{\square}$		$\wedge \boldsymbol{Z}$ 耪号号	$\stackrel{\sim}{\sim}$			毋 ¢ ¢ 镸	
	\pm		－$\bigcirc \stackrel{\text { ¢ }}{\text { ¢ }}$			is ¢ ¢ $\stackrel{\substack{\infty \\ \sim}}{ }$		
	$\stackrel{\sim}{\square}$		$\bigcirc \sim \sim$	$\mathfrak{C l}$				을 气言
				$\stackrel{\sim}{\sim}$				
				F				표
				の			スも镸管	
				∞				
				\wedge		\％○－豪，		
				\bullet	İ \sim ¢	和		
				\llcorner		于 은 흘웅	～ロ	员 음 長
				－				
				m				
	\sim		$+\underset{\infty}{\infty}$					® ¢ ¢［
	－							

	®－
	$\stackrel{\sim}{\circ}$
	$\bar{\square}$
	ロッ
	®
	的㐫蒠
	®U旨
	ヵ安蒠
	¢ ${ }_{\text {¢ }}$
$\bar{\circ} \mathrm{E}$	$\circledast \frac{2}{z}$
	ゥ的亳
in co	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

